Multi-Scale Topology Optimization of Discrete Lattice Structures


1.583 Final Project
Amira Abdel-Rahman
PhD Student
Center for Bits and Atoms (CBA)

Background

Digital Material

Discrete set of parts with relative positions and orientations; where global geometry is determined from local constraints, reversibly join parts with dissimilar properties to build heterogeneous functional systems. * Kenneth C Cheung and Neil Gershenfeld. Reversibly assembled cellular composite materials.science, 341(6151):1219–1221, 2013.
* Benjamin Jenett, Christopher Cameron, Filippos Tourlomousis, Alfonso Parra Rubio,Megan Ochalek, and Neil Gershenfeld. Discretely assembled mechanical metamaterials.Science Advances, 6(47):eabc9943, 2020.

Applications

Toyota Lattice Racing Car (TLDR)

NASA Wing (MADCAT)

Test Case Study: Morphing Wing



Project Overview

Inverse Design Process


Microstructure Optimization

Compliant Mechanism Design of Trusses


\[ \begin{aligned} & \underset{\rho^e}{\text{minimize}} & & V(\rho^e)=\sum_{e \in \Omega } \rho^e \upsilon^e \\ & \text{subject to} & & K (\rho^e)d-F=0 \\ & & & g= L_i^T d\leq d_{max,i} \ \forall i \in 1,..,m \\ & & & \rho^e_{min} \leq \rho^e \ \forall e \\ & \end{aligned} \]

Using the adjoint method

The gradient of objective function: \[ f= \sum_{e \in \Omega } \rho^e \upsilon^e \\ \frac{\delta f}{\delta \rho_e}=\sum_{e \in \Omega } \upsilon^e \] The gradient of each constraint $i \ \forall (1,..,m)$: \[ \frac{\delta g_A}{\delta \rho_e}= - \lambda_i^T \frac{\delta K(\rho_e)}{\delta \rho_e } d \\ \]

2D Initial Results


3D Initial Compliant Mechanisms Results






Results: Microstructures after Manual Cleanup



Homogenization

From nodes & edges to voxels to elasticity tensor
\[ {\mathbf{C}}^H=\frac{1}{\left|{\Omega}_m\right|}{\int}_{\Omega_m}\mathbf{C}\left(\varepsilon \left({\mathbf{u}}_m^0\right)-\varepsilon \left({\mathbf{u}}_m\right)\right)\left(\varepsilon \left({\mathbf{u}}_{\mathrm{m}}^0\right)-\varepsilon \left({\mathbf{u}}_m\right)\right)\mathrm{d}{\Omega}_m \] \[ {\int}_{\Omega_m}\mathbf{C}\varepsilon \left({\mathbf{u}}_{\boldsymbol{m}}\right)\varepsilon \left({\boldsymbol{\nu}}_m\right)\mathrm{d}{\Omega}_m={\int}_{\Omega_m}\mathbf{C}\varepsilon \left({\mathbf{u}}_m^0\right)\varepsilon \left({\boldsymbol{\nu}}_m\right)\mathrm{d}{\Omega}_m,\kern1.25em \forall {\boldsymbol{\nu}}_m\mathbf{\in}{H}_{per}\left({\Omega}_m,{\mathbb{R}}^d\right) \] * Dong G, Tang Y, Zhao Y. A 149 Line Homogenization Code for Three-Dimensional Cellular Materials Written in matlab. ASME. J. Eng. Mater. Technol.

Homogenization Results

Youngs Modulus

Lattice E11 E22 E33
Cube 6.9e7 6.9e7 6.9e7
Cuboct 9.85e7 9.85e7 9.85e7
Auxetic 2.584e8 1.608e8 1.608e8
Chiral 1.12e8 1.14e8 1.14e8

Shear Modulus

Lattice G23 G31 G12
Cube 1.45e6 1.45e6 1.45e6
Cuboct 5.04e7 5.04e7 5.04e7
Auxetic 3.34e7 6.78e7 3.34e7
Chiral 5.45e7 6.4e7 5.45e7

Poisson Ratio

Lattice v12 v13 v23 v21 v31 v32
Cube 0.056 0.056 0.056 0.056 0.056 0.056
Cuboct 0.294 0.294 0.294 0.294 0.294 0.294
Auxetic 0.063 0.063 0.376 0.039 0.039 0.376
Chiral 0.2 0.2 0.43 0.21 0.21 0.43

Macrostructure Optimization

Multi-Material Topology Optimization

The materials distribution is determined by the local volume fraction fields, α i (i = 1, … , p) \[ \boldsymbol{A}^{h} := \left\{ \alpha^{h} \in \left\{\alpha_{i}^{h} \in \boldsymbol{V}^{h}\left(\Omega^{h}\right)\right\}_{i\in \{1, \ldots, p\}} \left| \begin{array}{l} \\\\\\ \end{array} \right.\right. \] \[ \left. \begin{array}{ll} \sum_{i=1_{}}^{p} \alpha_{i}^{h} = 1, & \\ \int_{\Omega^{h}_{}} \alpha_{i}^{h} \ dx = \Lambda_{i} |\Omega^h|,\quad & i=1, \ldots, p \\ \boldsymbol{l}_{i}^{h} \leqslant \alpha_{i}^{h} \leqslant \boldsymbol{u}_{i}^{h}, \quad & i=1, \ldots, p \end{array} \right\} \] * Rouhollah Tavakoli and Seyyed Mohammad Mohseni. Alternating active-phase algorithmfor multimaterial topology optimization problems: a 115-line matlab implementation.Structural and Multidisciplinary Optimization, 49(4):621–642, 2014.

Implementation Results: MBB and Gripper



Extended code to 3D and implemented compliance objective

Hierarchal Topology Optimization

Cube               Cuboct


Auxetic               Chiral

Morphing Wing Problem Formulation



Final Results (Using same cuboct with different densities)


Red more stiff then blue then red.

Future Plans and Open Questions

Thank you!